计算机视觉与机器视觉
首先,我们有必要理清楚机器视觉与计算机视觉之间的关系。从学科分类上,二者都被认为是ArtificialIntelligence下属科目,不过计算机视觉偏软件,通过算法对图像进行识别分析,而机器视觉软硬件都包括(采集设备,光源,镜头,控制,机构,算法等),指的是系统,更偏实际应用。简单的说,我们可以认为计算机视觉是研究“让机器怎么看”的科学,而机器视觉是研究“看了之后怎么用”的科学。
计算机视觉与机器视觉的问题是,前者太学术,后者太工业,因而一直以来在消费级市场缺乏好的产品。图漾创始人费浙平向雷锋网(搜索“雷锋网”公众号关注)编辑说,机器视觉的很多核心技术和原理多年前就比较成熟了,近年来的进展主要集中在工程化,比如GPU和视觉计算加速器的出现解决了计算量问题。但与此同时,要想把视觉技术实现真正产品落地,中间还有不少其他问题,他们也在摸索中。
视觉技术在消费级市场最早的尝试是微软的Kinect。2010年,微软联合深度摄像头技术方案提供方PrimeSense正式对外推出Kinect,利用骨骼捕捉技术,Kinect可以捕捉游戏玩家的骨骼动作,从而让游戏玩家可以不接触屏幕即可玩游戏。在Kinect之后,华硕、Intel、谷歌以及苹果也相继在深度摄像头的应用场丙戊酸钠军海癫痫医院景上跟进,一切都看起来往好的方向发展。
但深度摄像头作为独立产品,市场化难度颇大。例如Intel在13年在开发者会议上宣布,将推出自己的微型深度感知模块,华硕、戴尔、惠普、联想等多家PC厂家都将从2014年下半年开始在产品线中部署这款深度感知模块。而两年多过去了,曾经预言的集成深度摄像头的产品迟迟未见。
那么,处于计算机视觉和机器视觉交叉部分的深度摄像头,应该如何打开消费级市场?
“机器视觉在消费市场落地,技术上是人工智能技术和机器人硬件有效融合的问题,有两条路:
1.自上而下。以人工智能技术应用为主,要求机器人硬件尽可能符合人工智能技术工程化的条件。这郑州军海癫痫医院意味着,产品得增加传感器,以保障智能算法数据供给,得提高成本,有良好的计算资源让复杂的智能算法“跑”起来。还意味着产品具有不稳定性,人工智能技术以概率为主,产品功能依赖人工智能技术的比例越大,产品功能越不稳定。机器视觉应用里面,人脸检测是很稳定的,但遇到黑人也难打包票。
2.自下而上。以机器人硬件为主,在功能上应用人工智能技术辅助。这意味着,产品比较可靠,但同时也失去了一些智能化的特性。当产品需要某些智能化的功能时,要花费大量人力针对某个“智能算法”做移植,将本来在不稳定环境中运行的算法应用在可控、高效而且低成本的嵌入式环境中,这点让很多专注理论算法的工程师头疼。
机器视觉技术落实在产品上,有时候是自下而上做产品的过程中,给了“智能算法”太多的束缚,大家总是优先考虑成本和稳定性,而不是技术应用本身。我们癫痫病要怎么治从人工智能领域出来做机器人,希望两者做个折衷,以自上而下的愿景给儿童癫痫症状智能技术找一个市场立足点。市场对智能产品需求的不明晰,也是机器视觉难落地市场的一大因素。”